Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius.
نویسندگان
چکیده
As tetrapods increase in size and weight through ontogeny, the limb skeleton must grow to accommodate the increases in body weight and the resulting locomotor forces placed upon the limbs. No study to date, however, has examined how morphological changes in the limb skeleton during growth reflect ontogenetic patterns of limb loading and the resulting stresses and strains produced in the limbs. The goal of this study was to relate forelimb loads to in vivo bone strains in the radius of the domestic goat (Capra hircus) across a range of gaits and speeds through ontogeny while observing how the growth patterns of the bone relate to the mechanics of the limb. In vivo bone strains in the radius were recorded from two groups of juvenile goats (4 kg, 6 weeks and 9 kg, 15 weeks) and compared with previously reported strain data for the radius of adult goats. Ontogenetic strain patterns were examined in relation to peak forelimb ground reaction forces, ontogenetic scaling patterns of cross-sectional geometry and bone curvature, and percentage mineral ash content. Peak principal longitudinal tensile strains on the cranial surface and compressive strains on the caudal surface of the radius increased during ontogeny but maintained a uniform distribution, resulting in the radius being loaded primarily in bending through ontogeny. The increase in strain occurred despite uniform loading (relative to body weight) of the forelimb through ontogeny. Instead, the increase in bone strain resulted from strong negative growth allometry of the cross-sectional area (proportional to M(0.53)) and medio-lateral and cranio-caudal second moments of area (I(ML) proportional to M(1.03), I(CC) proportional to M(0.84)) of the radius and only a small increase (+2.8%) in mineral ash content. Even though bone strains increased with growth and age, strains in the younger goats were small enough to suggest that they maintain safety factors at least comparable with adults when moving at similar absolute speeds. Increased variability of loading in juvenile animals may also favor the more robust dimensions of the radius, and possibly other limb bones, early in growth.
منابع مشابه
In vivo bone strain and ontogenetic growth patterns in relation to life-history strategies and performance in two vertebrate taxa: goats and emu.
This study examined ontogenetic patterns of limb loading, bone strains, and relative changes in bone geometry to explore the relationship between in vivo mechanics and size-related changes in the limb skeleton of two vertebrate taxa. Despite maintaining similar relative limb loads during ontogeny, bone strain magnitudes in the goat radius and emu tibiotarsus generally increased. However, while ...
متن کاملSkeletal strain patterns and growth in the emu hindlimb during ontogeny.
Most studies examining changes in mechanical performance in animals across size have typically focused on inter-specific comparisons across large size ranges. Scale effects, however, can also have important consequences in vertebrates as they increase in size and mass during ontogeny. The goal of this study was to examine how growth and development in the emu (Dromaius novaehollandiae) hindlimb...
متن کاملVariability in forelimb bone strains during non-steady locomotor activities in goats.
The purpose of this study was to investigate the effects of non-steady locomotor activities on load predictability in two goat forelimb bones and to explore the degree to which bone curvature influences load predictability. We measured in vivo bone strains in the radius and metacarpus of juvenile goats performing a variety of natural behaviors in an outdoor arena and compared these strain magni...
متن کاملOntogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius.
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the ra...
متن کاملRadiological and Histological Assessment of the Ossification Centers of Pectoral Limb in Quail
BACKGROUND: The growth and differentiation of skeletal pectoral limb girdle, wing and the ossification centers in these regions after hatching were investigated in some groups of quails. OBJECTIVES: The aim of this study was to determine the age of physical maturity and radiological and histological assessment of the ossification centers of pectoral limb in quail. METHODS: 14 quails after hatch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 15 شماره
صفحات -
تاریخ انتشار 2004